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Introduction
The analysis of turbulent developing duct flow is a crucial step in the proper
simulation of heat exchange devices, within various application areas, in the
search for an accurate prediction of friction factor and heat transfer coefficients.
In opposition to the simpler laminar flow situation, the design procedures are
still heavily based on the use of approximate empirical or semi-analytical
correlations (Shah and Bhatti, 1987). Besides the inherent difficulties associated
with the numerical solution of the associated non-linear boundary layer-type
equations, the choice of turbulence model, that completes the problem
formulation, is far from unanimous. Both differential and algebraic models
compete in the literature on numerical simulation of turbulent duct flows, with
specific relative merits in accuracy, simplicity and computational cost
(Minkowycz et al., 1988). Among the most frequently referenced turbulence
models (Minkowycz et al., 1988), the local algebraic model of Cebeci and Smith
(1974) is very well accepted in the analysis of internal flows, in light of the good

Nomenclature
DH = hydraulic diameter (= 4rw)
N = truncation order of system (10)
Ni = normalization integral, equation (7c)
p–, p* = pressure field, dimensional and

dimensionless
r, R = transversal co-ordinate, dimensional and

dimensionless
rw = half- distance between parallel-plates
Re = Reynolds number (= uo rw/υ)
Rc = limit of internal and external boundary

layer regions (Appendix 1)
u–, U

–
= longitudinal velocity component,

dimensional and dimensionless
uo = inlet velocity
U∞ �( R) = fully developed velocity distribution
υ,V = transversal velocity component,

dimensional and dimensionless

z, Z = longitudinal co-ordinate, dimensional
and dimensionless

ZI = Starting position of intermediate region
in the turbulence model (Appendix 1).

Greek Symbols
α = thermal difusivity
ε = relative error in adaptive procedure,

equation (13)
∈ = dimensionless turbulent viscosity
µi = eigenvalues of problem (6)
Ψi (R) = eigenfunctions of problem (6)
υ = kinematic viscosity
δ = dimensionless boundary layer thickness
ρ = fluid density

Subscripts and Superscripts
- - = integral transformed quantities
i, j, k = order from eigenvalue problem
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agreement achieved against experimental results for the velocity distributions
(Cebeci and Chang, 1978), in both circular tube and parallel-plates geometries.

Without exception, the available turbulence models require some sort of
adjustment in order to roughly match experimental measurements, through
certain coefficients pertinent to the specific model considered. Therefore, it
would be quite desirable to devise a fully error-controlled numerical procedure
for the turbulent boundary layer equations, not to contaminate the adjusted
coefficients with non-converged numerical results, and allow for an improved
matching of theoretical and experimental findings. Quite recently, based on the
ideas of the so-called generalized integral transform technique (Cotta, 1993),
hybrid numerical-analytical solutions with automatic global error control were
obtained, for different classes of non-linear heat and fluid flow problems
(Boohua and Cotta, 1993; Campos Silva et al., 1992; Carvalho et al., 1993; Cotta,
1990; Cotta and Carvalho, 1991; Cotta and Serfaty, 1991; Cotta et al., 1992; Diniz
et al., 1990; Leiroz and Cotta, 1993; Machado and Cotta, 1995; Pérez Guerrero
and Cotta, 1992; Pérez Guerrero et al., 1993; Serfaty and Cotta, 1990; Serfaty and
Cotta, 1992), including the laminar boundary layer equations for duct flow
(Campos Silva et al., 1992; Carvalho et al., 1993; Cotta and Carvalho, 1991;
Machado and Cotta, 1995).

Within this context, the present work further advances the integral
transform approach by handling the boundary layer equations for developing
duct flow in the turbulent regime. The Cebeci-Smith algebraic model is chosen
to provide the required equations for the turbulent diffusivity, allowing for the
illustration of the proposed procedure. The convergence behavior of the
eigenfunction expansions is demonstrated and different choices of eigenvalue
problem are discussed. Fully converged numerical results for the velocity
components are then critically compared with experimental results, as well as
against numerical results from previous works that employed different
turbulence models.

Analysis
We consider incompressible turbulent flow of a Newtonian fluid, developing
between parallel plates from the duct entrance with a uniform inlet velocity
distribution. Within the range of validity for the turbulent boundary layer
formulation, the flow problem is written, in dimensionless form, as:

– Continuity

(1a)

– Z-momentum equation:

(1b)
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with inlet and boundary conditions given respectively by

(1.c,d)

��
(1.e,f)

(1.g,h)

where various dimensionless groups are defined as 

(2)

The algebraic turbulence model employed (Cebeci and Chang, 1978; Cebeci and
Smith, 1974) is briefly described in Appendix 1, which provides the required
expressions for the turbulent diffusivity in dimensionless form, ∈ .

For improved convergence behavior in the eigenfunction expansions, the
fully developed flow solution, U∞(R), is filtered from the above equations, in the
form:

(3)

where the expression for U∞ (R) is presented in Appendix 2.
After substitution of equation (3) into the original equations (1), the problem

formulation becomes:

(4a)

(4b)

with the modified inlet condition

(4c)

while the remaining conditions are kept unaltered.
We proceed by eliminating the dependent variables V and p* from the

momentum equation (4b) to be solved for the longitudinal velocity component,
U*.
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Therefore, from direct integration of the continuity equation (4a), one finds:

(5a)

while the dimensionless pressure gradient is obtained from integration of the
momentum equation over the channel cross-section to yield

(5b)

Following the ideas in the generalized integral transform technique (Cotta,
1993), an auxiliary problem is selected to provide a basis for the eigenfunction
expansion. One possible choice is given by:

(6a)

�
(6b,c)

which is readily solved to yield

(7a,b)

and the normalization integral becomes

(7c)

A second possible choice of eigenvalue problem, which incorporates some
information on the turbulent diffusivity profile, is discussed later.

Problem (6) above allows definition of the following integral transform pair

(8a)

(8b)

The transversal velocity component and the pressure gradient may be
expressed in terms of the transformed potential, U

– *
i (Z) as:

(9a)
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(9b)

where

(9c)

(9d)

The integral transformation process in now performed, by applying the
operator

on equation (4b); after substitution of expressions (9a,b) above, the following
ordinary differential system results

(10a)

and the inlet condition (4.c) is similarly transformed to yield

(10b)

where the various coefficients are given by

(11a)

(11b)

(11c)
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(11d)

(11e)

(11f)

(11g)

Some of the integrals above are readily evaluated in analytic form, while those
depending on the turbulent diffusivity (or on the transformed potential itself)
are evaluated numerically through subroutines with automatic schemes for
error control (IMSL Library, 1987). For computational purposes, the infinite
system (10) is truncated to a sufficiently large order so as to satisfy the user
prescribed accuracy requirements. In fact, this truncation order is automatically
selected and varied along the course of integration of system (10), as described
in the next section. The non-linear ODE system is also handled through
scientific subroutine libraries with well-tested error control schemes (IMSL
Library, 1987).

Once the transformed potentials, � U
–*

k�, have been numerically obtained at any
position Z of interest, the original longitudinal velocity component is
determined from:

(12)

Computational procedure
The computations are implemented through the use of well-established
subroutines for numerical integration and solution of implicit stiff ODE
systems, such as those available in IMSL Library (1987). These routines
incorporate automatic relative error control schemes, which allow for
conservative evaluations towards a user requested accuracy. Since all the
intermediate numerical tasks are accomplished within user prescribed
accuracy, one is left with the need to control the global solution error, through
the convergence analysis of the eigenfunction expansion. Therefore, in order to
implement an automatic procedure, the truncation order, N, must be chosen
adaptively during the course of computation, for a certain number of fully
converged digits requested in the final solution, at those positions of interest.
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The analytic nature of the inversion formula allows for a direct testing
scheme at each specified position where a solution is required, and the
truncation order, N, can be gradually varied, either reduced or increased when
needed, to meet the user error requirements. The simple formula for checking
the accuracy achieved is given by:

(13)

where N* is reduced with respect to N while ε still fits the user requested
precision; at this limit, N is changed to assume the value of N*, and the
integration proceeds to the next requested value of Z, with a reduced number of
ODEs. The truncation order can also be increased and the integration from the
previous value of Z be repeated, in case convergence was not achieved. At each
desired Z, a fully converged solution will then be available, at the desired
precision, together with the error estimation itself, and reducing computational
costs.

Results and discussion
The computational procedure was implemented on a VAX8810 mainframe
computer, with a global prescribed relative error of 10–4, i.e. the final converged
results are expected to be accurate to �± 1 in the fourth digit provided.
Truncation orders of N� ≤ 25 were required to achieve convergence, along a wide
range of the dimensionless longitudinal co-ordinate.

Numerical results were obtained for different values of the Reynolds number,
and compared critically against experimental and previously reported
numerical results. First, the convergence rates of the eigenfunction expansion
are illustrated, at different positions along the duct length, Z/DHH = 10 and 25,
for Re = 4.8 × 104. Tables I and II show the longitudinal velocity profiles at these

Nc
R 5 9 13 17 21 25

0.0 1.134 1.143 1.102 1.101 1.100 1.100
0.2 1.125 1.136 1.101 1.001 1.100 1.100
0.4 1.105 1.122 1.089 1.089 1.088 1.088
0.6 1.057 1.077 1.045 1.044 1.046 1.046
0.8 0.9530 0.9676 0.9146 0.9147 0.9143 0.9143
0.9 0.8553 0.8620 0.8229 0.8227 0.8227 0.8228

Table I.
Convergence of the 
longitudinal velocity 
profile
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positions respectively. For the position closer to the duct inlet, as usual in
eigenfunction expansions approaches, a larger number of terms is required, and
full convergence to four digits is achieved with N � ≤ 21, while at Z/DH = 25 the
convergence rate is clearly improved. The columns for N = 25 provide a set of
benchmark results for the velocity distribution. This trend is also presented in
graphical form, through Figures 1 and 2. On the graph scale, the results for Z/DH

Figure 1.
Convergence of

longitudinal velocity
profile (Re = 4.8 × 104;

Z/DH = 10)

1.20
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U

R
0.00 0.40 0.80 1.20

Key
Nc = 5
Nc = 9
Nc = 13,17,21,25

Z/Dh = 10
Re = 4.8 x 104

Nc
R 5 9 13 17 21 25

0.0 1.137 1.139 1.144 1.143 1.142 1.142
0.2 1.116 1.118 1.123 1.122 1.121 1.121
0.4 1.076 1.077 1.080 1.080 1.079 1.080
0.6 1.017 1.017 1.019 1.019 1.018 1.018
0.8 0.9238 0.9237 0.9244 0.9244 0.9242 0.9243
0.9 0.8387 0.8387 0.8390 0.8390 0.8390 0.8390
0.94 0.7789 0.7788 0.7790 0.7790 0.7798 0.7798
0.98 0.6457 0.6457 0.6460 0.6458 0.6479 0.6479

Table II.
Convergence of the 

longitudinal velocity 
profile
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= 10 are practically coincident for N� ≥ 13, while for Z/DH = 25, N as low as five
already presents a very good agreement with the fully converged results. Also
of interest is the illustration of the convergence behavior for the centerline
velocity along the whole channel length. Table III and Figure 3 show the
centerline velocity along  Z/DH , for Re = 4.8 × 104, as computed from different
truncation orders. Again quite noticeable is the improvement on convergence
rates for increasing dimensionless duct length, with full convergence to four
digits achieved, in the worst situation, for N� ≤ 21. From Figure 3, it can be seen
that within the intermediate region of the turbulence model, convergence of the

Figure 2.
Convergence of
longitudinal velocity
profile (Re = 4.8 × 104;
Z/DH = 25)
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R
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Nc = 5,9,13,17,21,25

Z/Dh = 25
Re = 4.8 x 104

Nc
R 5 9 13 17 21 25

5 1.069 1.066 1.038 1.036 1.034 1.034
10 1.136 1.143 1.101 1.100 1.100 1.100
15 1.149 1.153 1.162 1.142 1.152 1.152
20 1.146 1.149 1.156 1.154 1.152 1.152
25 1.137 1.139 1.144 1.143 1.142 1.142
30 1.131 1.132 1.135 1.135 1.134 1.134
35 1.126 1.127 1.129 1.129 1.129 1.129
40 1.124 1.124 1.125 1.125 1.125 1.125
45 1.122 1.122 1.123 1.123 1.123 1.123
50 1.121 1.121 1.122 1.122 1.122 1.122

Table III.
Convergence of the 
longitudinal centerline
velocity
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velocity field is not achieved until all the parameters involved in the model are
also converged, including the starting position of the intermediate region, ZI,
which occurs for N ≅ 13.

Figure 4 illustrates the automatic control of the truncation order, N, along the
integration path in the Z co-ordinate, for different values of Re = 3.5 × 104,
4.8 × 104, 5.0 × 104, and 1.0 × 105. A slight influence of the Reynolds number

Figure 3.
Convergence of

centerline velocity along
channel length 
(Re = 4.8 × 104)
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Figure 4.
Automatic control of

truncation orders in the
eigenfunction

expansions, for different
Reynolds numbers 
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on convergence rates is observed from the behavior for the larger value of
Re = 1.0 × 105. This adaptive procedure of controlling the order of the
eigenfunction expansions, and consequently the size of the truncated ODE
system for the transformed potentials, results in a marked reduction of the
computation cost and offers a continuous error estimation scheme at any
desired position within the solution domain.

Figures 5 and 6 present a comparison among the integral transform results,
the experimental analysis of Dean (1972), and the finite differences results of

Figure 6.
Comparison of
theoretical and
experimental results for
the longitudinal velocity
profile (Re = 0.5 × 105)
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Figure 5.
Comparison of
theoretical and
experimental results for
the longitudinal velocity
profile (Re = 0.5 × 105)
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Cebeci and Chang (1978), that employed essentially the same turbulence model.
The value of Re = 0.5 × 105 was employed in these comparisons, and the
longitudinal velocity profiles are shown for different axial distances, Z/DH =
4.15, 7.15, 10.2, 13.25, 19.35 and 37.65. The overall agreement is quite good, with
a maximum deviation of the two theoretical approaches of about 4 per cent
between themselves, and an even better agreement with the experimental
results. A similar comparison is presented in Figure 7, where the integral
transform results are again compared against experimental results due to
Byrne et al. (1969) and previously reported numerical results obtained by
Zaparoli (1989), where a differential k-ε turbulence model was employed. The
value of Re = 3.5 × 104 is chosen in this set of results, and different values of Z/DH
= 10, 20 and 30. Again, the agreement among the three sets of results is quite
good, with relative deviations below 4 per cent.

Figure 8 brings an interesting comparison related to the evolution of the
centerline velocity along the channel, for Re = 4.8 × 104, including the present
results, the numerical results of Cebeci and Chang (1978), the finite differences/
k –∈ model results of Zaparoli (1989) and the experimental results of Dean
(1972). Clearly, the best agreement with the experiments is achieved by the
simulation of Cebeci and Chang (1978), followed by the integral transform
solution, with a noticeable deviation in the location of the maximum centerline
velocity. However, it should be remembered that this situation was adjusted to
match experimental and theoretical results (Cebeci and Chang, 1978), through
the parameter � λ in the intermediate region, according to the analysis of Cebeci
and Chang (1978). The question is then raised whether the adopted value of
λ = 20 could be contaminated with the numerical uncertainties of the
computational scheme itself. Some preliminary numerical experiments
demonstrated that some variation on the value of � λ (for instance, � λ = 30), could

Figure 7.
Comparison of
theoretical and

experimental results for
the longitudinal velocity

profile (Re = 3.5 × 104)
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offer an improved agreement of the present results, with user-prescribed
accuracy, and the experimental results of Dean (1972). Additional study is then
required for the establishment of a more definitive recommended value of this
important parameter. Nevertheless, the present results deviate from the
analysis of Cebeci and Chang (1978) by a maximum of about 3 per cent along
the whole solution domain.

Meanwhile, Figure 9 shows the evolution of the centerline velocity, as
obtained through the integral transform approach, for different values of the

Figure 9.
Evolution of the
centerline velocity along
channel length for
different Reynolds
numbers
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Figure 8.
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the centerline velocity
evolution (Re = 4.8 × 104)
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Reynolds number, Re = 3.5 × 104, 4.8 × 104, 5.0 × 104 and 1.0 × 105. The expected
physical trends are clearly observable from this figure, in all cases indicating
that the maximum centerline velocity position is located before the fully
developed region, as opposed to the laminar flow situation. Also, the increase in
Reynolds number promotes the expected decrease of the centerline velocity
levels.

A second choice of eigenvalue problem was also considered, which
incorporates in its diffusion operator the information on the fully developed
turbulent diffusivity, � ∈ ∞(R). An explicit straightforward solution to the
auxiliary problem is then not achievable, but the integral transform method
itself (Cotta, 1993; Mikhailov and Cotta, 1994) was employed in the accurate
solution for eigenvalues and related eigenfunctions. The fully converged results
from this alternative eigenfunction expansion are in perfect agreement with
those obtained through the present basis, represented by problem (b). As
expected, there was an improvement on convergence rates, especially for
regions not so close to the duct inlet, but on overall computational performance,
the present proposition still offers advantages in simplicity and costs in terms of
CPU time.

The generalized integral transform technique (Cotta, 1993) has proved to be
a feasible approach in the analysis of developing duct flows, both for laminar
and turbulent regimen, providing a hybrid numerical-analytical solution of the
velocity components, with the attractive feature of automatic global error
control. This aspect might offer advantages over purely numerical approaches,
in the calibration of turbulence models against experimental results, through a
more precise adjustment of the pertinent coefficients. Also, the present progress
will allow for the extension towards the consideration of more involved
differential turbulence models, following this trend in the most of the literature.

References
Arpaci, V.S. and Larsen, P.S. (1984), Convection Heat Transfer, Prentice-Hall, London.
Baohua, C. and Cotta, R.M. (1993), “Integral transform analysis of natural convection in porous

enclosures”, Int. J. Num. Meth. Fluids, Vol. 17, pp. 787-801.
Bradshaw, P., Cebeci, T. and Whitelaw, J.H. (1981), Engineering Calculation Methods for Turbulent

Flows, Academic Press, London.
Byrne, J., Hatton, A.P. and Marriot, P.G. (1969-70), “Turbulent flow and heat transfer in entrance

region of parallel wall passage”, Proceedings, Inst. Mech. Eng., Vol. 184, part. 1, No 39, p. 697.
Campos Silva, J.B., Cotta, R.M. and Aparecido, J.B. (1992), “Analytical solution to simultaneously

developing laminar flow inside parallel-plates channel”, Int. J. Heat & Mass Transfer, Vol. 35,
pp. 887-95.

Carvalho, T.M.B., Cotta, R.M. and Mikhailov, M.D. (1993), “Flow development in the entrance
region of ducts”, Comm. Num. Meth. Eng., Vol. 9, pp. 503-09.

Cebeci, T. and Chang, K.C. (1978), “A general method for calculating momentum and heat transfer
in Laminar and turbulent duct flows”, Num. Heat Transfer, Vol. 1, pp. 39-68.

Cebeci, T. and Smith, A.M.O. (1974), Analysis of Turbulent Boundary Layers, Academic Press,
New York, NY. 

Cotta, R.M. (1990), “Hybrid numerical-analytical approach to nonlinear diffusion problems”, Num.
Heat Transfer, part B – Fundamentals, Vol. 17, pp. 217-26.



HFF
8,1

24

Cotta, R.M. (1993), Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Boca
Raton, FL.

Cotta, R.M. and Carvalho, T.M.B. (1991), “Hybrid analysis of boundary layer equations for
internal flow problems”, 7th Int. Conf. on Num. Meth. for Thermal Problems, Part I, July,
pp. 106-15, Stanford, CA.

Cotta, R.M. and Serfaty, R. (1991), “Integral transform algorithm for parabolic diffusion problems
with nonlinear boundary and equation source terms”, 7th Int. Conf. on Num. Meth. for
Thermal Problems, Part II, July, pp. 916-26, Stanford, CA.

Cotta, R.M., Pérez Guerrero, J.S. and Scofano Neto, F. (1992), “Hybrid solution of the
incompressible Navier-Stokes equations via integral transformation”, 2nd Int. Conf. Adv.
Comp. Meth. in Heat Transfer, Vol. 1, pp. 735-50, Milan.

Dean, R.B. (1972), “Interaction of turbulent shear layers in duct flow”, PhD dissertation, London
University.

Diniz, A.J., Aparecido, J.B. and Cotta, R.M. (1990), “Heat conduction with ablation in a finite slab”,
Int. J. Heat & Tech., Vol. 8, pp. 30-43.

IMSL Library (1987), MATH/LIB, Houston, TX.
Leiroz, A.J.K. and Cotta, R.M. (1993), “On the solution of nonlinear elliptic convection-diffusion

problems through the integral transform method”, Num. Heat Transfer, part B-Fundamentals,
Vol. 23, pp. 401-11.

Machado, H.A. and Cotta, R.M. (1995), “Integral transform method for boundary layer equations
in simultaneous heat and fluid flow problems”, Int. J. Num. Meth. Heat & Fluid Flow, Vol. 5,
pp. 225-37.

Mikhailov, M.D. and Cotta, R.M. (1994), “Integral transform method for eigenvalue problems”,
Comm. Num. Meth. Eng., Vol. 10, pp. 827-35.

Minkowycz, W.J., Sparrow, E.M., Schneider, G.E. and Pletcher, R.H. (Eds) (1988), Handbook of
Numerical Heat Transfer, John Wiley, New York, NY.

Perez Guerrero, J.S. and Cotta, R.M. (1992), “Integral transform method for the Navier-Stokes
equations in streamfunction-only formulation”, Int. J. Num. Meth. Fluids, Vol. 15, pp. 399-409.

Pérez Guerrero, J.S., Cotta, R.M. and Scofano Neto, F. (1993), “Integral transformation of Navier-
Stokes equations for incompressible laminar flow in channels”, 8th Int. Conf. Num. Meth. in
Laminar & Turbulent Flow, Vol. 2, pp. 1195-1206, Swansea.

Serfaty, R. and Cotta, R.M. (1990), “Integral transform solutions of diffusion problems with
nonlinear equation coefficients”, Int. Comm. Heat & Mass Transfer, Vol. 17, pp. 851-67.

Serfaty, R. and Cotta, R.M. (1992), “Hybrid analysis of transient nonlinear convection-diffusion
problems”, Int. J. Num. Meth. Heat & Fluid Flow, Vol. 2, pp. 55-62.

Shah, R.K. and Bhatti, M.S. (1987), “Turbulent convective heat transfer in ducts”, in Kakaç, S.,
Shak, R.K. and Aung, W. (Eds), Handbook of Single-Phase Convective Heat Transfer, John
Wiley, New York, NY.

Zaparoli, E.L. (1989), “Calculation of turbulent flow and heat transfer in the entry region of tubes
and parallel-plates with two versions of the k-e model for low Reynolds numbers”, DSc
dissertation (in Portuguese), Instituto Tecnológico de Aeronáutica, São Paulo.

Appendix 1. Turbulence model (Bradshaw et al., 1981; Cebeci and Chang, 1978;
Cebeci and Smith, 1974; Mikhailov et al., 1988)
The Cebeci-Smith model describes the turbulent viscosity along the flow direction, for three
distinct regions, namely, inlet, intermediate, and fully developed flow regions. The expressions
here employed are now summarized for each individual flow region.

Inlet region (O<Z<ZI )
This region is characterized by a weak interaction of the boundary layers, and is then subdivided
into an internal region, where inertia terms are neglected, and the external region, where viscous
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effects are not relevant. The respective relations for the dimensionless turbulent viscosity are
given by:

• Internal boundary layer region (Rc<R<1)

(A1)

where,

(A2)

and the boundary layer thickness, δ, is defined as the transversal length for which the
longitudinal velocity component reaches 99.9 per cent of its centerline value, or 

(A3)

The criteria adopted here might differ from that utilized in Cebeci and Chang (1978), which is not
clearly pointed out.

• External boundary layer region (0 < R < Rc)

(A4)

where the limit between the internal and external regions, Rc, is determined by matching the
diffusivities in the two sub-regions

(A5)

Intermediate region (ZI<Z<ZH )
This region involves complex interactions and the model needs to be adjusted against
experimental results. The inlet region model is employed until a Z position in which the boundary
layer thickness reaches 95 per cent of half the distance between the parallel-plates, which defines
the initial position of the intermediate region, ZI. From this point on, the turbulent viscosity
profile obtained through the inlet region model is utilized in conjunction with the fully developed
region profile, according to the following expression:

(A6)

where � ∈ o(ZI,R) is the turbulent viscosity at Z = ZI obtained from the inlet region model, ε∞ (R) is
the fully developed turbulent viscosity profile, to be presented in the following, and λ is an
empirical constant, determined in Cebeci and Chang (1978) through the adjustment of the
centerline velocity numerical results to the experimental results of Dean (1972). The proposed
value in Cebeci and Chang (1978) is � λ = 20, obtained from the matching of results for Re = 5 ×
104. The same value of λ was employed here for comparison purposes.

Fully developed region (Z > ZH )
The Nikuradse’s relation for the mixing length is employed in this region, yielding the following
working relation for the dimensionless turbulent diffusivity:

(A7)

where,

(A8)
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Appendix 2. Fully developed velocity profile
In the fully developed flow region, the governing equations reduce to:

(A9)

where � ∈ ∞ �( R) and dp*
∞ /dZ are, respectively, the fully developed dimensionless turbulent

diffusivity and axial pressure gradient, and the required boundary conditions are given by

(A10,11)

The turbulent viscosity, defined by equation (A7), may be written in the convenient form

(A12)

where,

(A13)

and,

F(R) = 0.14 – 0.08R2 – 0.06 R4 (A14)

The pressure gradient is determined from integration of equation (A9) over the channel cross-
section, to yield:

(A15)

Integration of equation (A9) first yields the velocity gradient:

(A16)

and a second integration from the channel wall to R, provides

(A17)

Finally, the velocity gradient at the duct wall is determined from satisfaction of the continuity
equation

(A18)

which results in the following transcendental equation

(A19)

that can be handled with readily available subroutines for automatic integration and solution of
non-linear equations (IMSL Library, 1987).

This profile was compared against the three layers velocity expressions provided by Reynolds
et al. (see Arpaci and Larsen, 1984) with very good agreement.


